FRQM: A Frame Rate Dependent Video Quality Metric

Fan Zhang, Alex Mackin and David Bull

ABSTRACT

This page introduces the work of an objective quality metric (FRQM), which characterises the relationship between variations in frame rate and perceptual video quality. The proposed method estimates the relative quality of a low frame rate video with respect to its higher frame rate counterpart, through temporal wavelet decomposition, subband combination and spatiotemporal pooling. FRQM was tested alongside six commonly used quality metrics (two of which explicitly relate frame rate variation to perceptual quality), on the publicly available BVI-HFR video database, that spans a diverse range of scenes and frame rates, up to 120fps. Results show that FRQM offers significant improvement over all other tested quality assessment methods with relatively low complexity.

PROPOSED ALGORITHM

SOURCE CODE DOWNLOAD

[DOWNLOAD] Matlab code

REFERENCE

[1] Fan Zhang, Alex Mackin, and David, R. Bull, “A Frame Rate Dependent Video Quality Metric based on Temporal Wavelet Decomposition and Spatiotemporal Pooling. “, IEEE ICIP, 2017.

 

BVI-HD: A Perceptual Video Quality Database for HEVC and Texture Synthesis Compressed Content

Fan Zhang, Felix Mercer Moss, Roland Baddeley and David Bull

ABSTRACT

This page introduces a new high definition video quality database, referred to as BVI-HD, which contains 32 reference and 384 distorted video sequences plus subjective scores. The reference material in this database was carefully selected to optimise the coverage range and distribution uniformity of five low level video features, while the included 12 distortions, using both original High Efficiency Video Coding (HEVC) and HEVC with synthesis mode (HEVC-SYNTH), represent state-of-the-art approaches to compression. The range of quantisation parameters included in the database for HEVC compression was determined by a subjective study, the results of which indicate that a wider range of QP values should be used than the current recommendation. The subjective opinion scores for all 384 distorted videos were collected from a total of 86 subjects, using a double stimulus test methodology. Based on these results, we compare the subjective quality between HEVC and synthesised content, and evaluate the performance of nine state-of-the-art, full-reference objective quality metrics. This database has now been made available online, representing a valuable resource to those concerned with compression performance evaluation and objective video quality assessment.

DATABASE DOWNLOAD

[DOWNLOAD] instructions and related file.

[DOWNLOAD] all videos from CDVL (personal account may need to be registered first).

[DOWNLOAD] all subjective data.

Please read the README file before using the data.

If this content has been mentioned/used in a research publication, please give credit to both CDVL and the University of Bristol, by referencing the following papers:

[1] Fan Zhang, Felix Mercer Moss, Roland Baddeley, and David, R. Bull, “BVI-HD: A Video Quality Database for HEVC Compressed and Texture Synthesised Content”, IEEE Trans. on Multimedia, 2018.

[2] Margaret H. Pinson, “The Consumer Digital Video Library [Best of the Web],” IEEE Signal Processing Magazine, vol. 30, no. 4, pp. 172,174, July 2013 doi: 10.1109/MSP.2013.2258265

 

Perceptual Quality Metrics (PVM)

RESEARCHERS

Dr. Fan (Aaron) Zhang

INVESTIGATOR

Prof. David Bull, Dr. Dimitris Agrafiotis and Dr. Roland Baddeley

DATES

2012-2015

FUNDING

ORSAS and EPSRC

SOURCE CODE 

PVM Matlab code Download.

INTRODUCTION

It is known that the human visual system (HVS) employs independent processes (distortion detection and artefact perception – also often referred to near-threshold supra-threshold distortion perception) to assess video quality for various distortion levels. Visual masking effects also play an important role in video distortion perception, especially within spatial and temporal textures.

Algorithmic diagram for PVM.
It is well known that small differences in textured content can be tolerated by the HVS. In this work, we employ the dual-tree complex wavelet transform (DT-CWT) in conjunction with motion analysis to characterise this tolerance within spatial and temporal textures. The DT-CWT has been found to be particularly powerful in this context due to its shift invariance and orientation selectivity properties. In highly distorted video content, for compressed material, blurring is one of the most commonly occuring artefacts. This is detected in our approach by comparing high frequency subband coefficients from the reference and distorted frames, also facilitated by the DT-CWT. This is motion-weighted in order to simulate the tolerance of the HVS to blurring in content with high temporal activity. Inspired by the previous work of Chandler and Hemamiand Larson and Chandler, thresholded differences (defined as noticeable distortion) and blurring artefacts are non-linearly combined using a modified geometric mean model, in which the proportion of each component is adaptively tuned. The performance of the proposed video metric is assessed and validated using the VQEG FRTV Phase I and the LIVE video databases, and shows clear improvements in correlation with subjective scores, over existing metrics such as PSNR, SSIM, VIF, VSNR, VQM and MOVIE, and in many cases over STMAD.

RESULTS

Figure: Scatter plots of subjective DMOS versus different video metrics on the VQEG database.
Figure: Scatter plots of subjective DMOS versus different video metrics on the LIVE video database.

REFERENCE

  1. A Perception-based Hybrid Model for Video Quality Assessment F. Zhang and D. Bull, IEEE T-CSVT, June 2016.
  2. Quality Assessment Methods for Perceptual Video Compression F. Zhang and D. Bull, ICIP, Melbourne, Australia, September 2013.

 

Parametric Video Coding

RESEARCHERS

Dr. Fan (Aaron) Zhang

INVESTIGATOR

Prof. David Bull, Dr. Dimitris Agrafiotis and Dr. Roland Baddeley

DATES

2008-2015

FUNDING

ORSAS and EPSRC

INTRODUCTION

In most cases, the target of video compression is to provide good subjective quality rather than to simply produce the most similar pictures to the originals. Based on this assumption, it is possible to conceive of a compression scheme where an analysis/synthesis framework is employed rather than the conventional energy minimization approach. If such a scheme were practical, it could offer lower bitrates through reduced residual and motion vector coding, using a parametric approach to describe texture warping and/or synthesis.

methodDiagram-1200x466

Instead of encoding whole images or prediction residuals after translational motion estimation, our algorithm employs a perspective motion model to warp static textures and utilises texture synthesis to create dynamic textures. Texture regions are segmented using features derived from the complex wavelet transform and further classified according to their spatial and temporal characteristics. Moreover, a compatible artefact-based video metric (AVM) is proposed with which to evaluate the quality of the reconstructed video. This is also employed in-loop to prevent warping and synthesis artefacts. The proposed algorithm has been integrated into an H.264 video coding framework. The results show significant bitrate savings, of up to 60% compared with H.264 at the same objective quality (based on AVM) and subjective scores.

RESULTS

 

 

REFERENCE

  1. Perception-oriented Video Coding based on Image Analysis and Completion: a Review. P. Ndjiki-Nya, D. Doshkov, H. Kaprykowsky, F. Zhang, D. Bull, T. Wiegand, Signal Processing: Image Communication, July 2012.
  2. A Parametric Framework For Video Compression Using Region-based Texture Models. F. Zhang and D. Bull, IEEE J-STSP, November 2011.