Great Ape Detection and Behaviour Recognition

Tilo Burghardt, X Yang, F Sakib, M Mirmehdi

The problem of visually identifying the presence and locations of animal species filmed in natural habitats is of central importance for automating the interpretation of large-scale camera trap imagery. This is particularly challenging in scenarios where lighting is difficult, backgrounds are non-static, and major occlusions, image noise, as well as animal camouflage effects occur: filming great apes viacamera traps in jungle environments constitutes one such setting. Finding animals under these conditions and classifying their behaviours are important tasks in order to exploit the filmed material for conservation or biological modelling.

Together with researchers from various institutions including the Max Planck Institute for Evolutionary Anthropology we developed deep learning systems for detecting great apes in challenging imagery in the first place and for identifying animal behaviours exhibited in these camera trap clips once apes have been recognised.


Captions: (top) System Overview for CamTrap Detector. (middle and bottom) Behaviour Recognition Examples, note that the PanAfrican Programme owns the video copyrights.

Acknowledgements: All Copyright of all Images and Videos resides with the PanAfrican Programme at the MPI. We thank them for allowing to use their data for publishing our technical engineering work. We would like to thank the entire team of the Pan African Programme: ‘The Cultured Chimpanzee’ and its collaborators for allowing the use of their data. Please contact the copyright holder Pan African Programme at http://panafrican.eva.mpg.de to obtain the videos used. Particularly, we thank: H Kuehl, C Boesch, M Arandjelovic, and P Dieguez. We would also like to thank: K Zuberbuehler, K Corogenes, E Normand, V Vergnes, A Meier, J Lapuente, D Dowd, S Jones, V Leinert, EWessling, H Eshuis, K Langergraber, S Angedakin, S Marrocoli, K Dierks, T C Hicks, J Hart, K Lee, and M Murai.
Thanks also to the team at https://www.chimpandsee.org. The work that allowed for the collection of the dataset was funded by the Max Planck Society, Max Planck Society Innovation Fund, and Heinz L. Krekeler.
In this respect we would also like to thank: Foundation Ministre de la Recherche Scientifique, and Ministre des Eaux et Forłts in Cote d’Ivoire; Institut Congolais pour la Conservation de la Nature and Ministre de la Recherch Scientifique in DR Congo; Forestry Development Authority in Liberia; Direction des Eaux, Forłts Chasses et de la Conser- vation des Sols, Senegal; and Uganda National Council for Science and Technology, Uganda Wildlife Authority, National Forestry Authority in Uganda.

Related Publications

F Sakib, T Burghardt. Visual Recognition of Great Ape Behaviours in the Wild. In press. Proc. 25th International Conference on Pattern Recognition (ICPR) Workshop on Visual Observation and Analysis of Vertebrate And Insect Behavior (VAIB), January 2021. (Arxiv PDF)

X Yang, M Mirmehdi, T Burghardt. Great Ape Detection in Challenging Jungle Camera Trap Footage via Attention-Based Spatial and Temporal Feature Blending. Computer Vision for Wildlife Conservation (CVWC) Workshop at IEEE International Conference of Computer Vision (ICCVW), pp. 255-262, October 2019. (DOI:10.1109/ICCVW.2019.00034), (CVF Version), (Arxiv PDF), (Dataset PanAfrican2019 Video), (Dataset PanAfrican2019 Annotations and Code)